LLM
ai/llm
Component: AI text generation component that produces content based on large language model understanding of user inputs, context, or images.
Supports all OpenAI API-compatible large model platforms, such as:
Gitee AI
- Registration: Gitee AI Console (opens new window)
- Endpoint:
https://ai.gitee.com/v1
- Supported Models: DeepSeek-R1, DeepSeek-R1-Distill-Qwen-32B, Qwen2-VL-72B, etc.
Baidu Qianfan
- Registration: Baidu Cloud Console (opens new window)
- Endpoint:
https://qianfan.baidubce.com/v2
- Supported Models: Ernie series.
Zhipu Qingyan
- Registration: Zhipu API Key Management (opens new window)
- Endpoint:
https://open.bigmodel.cn/api/paas/v4
- Supported Models: GLM-based dialogue models.
iFLYTEK Spark
- Registration: iFLYTEK Console (opens new window)
- Endpoint:
https://spark-api-open.xf-yun.com/v1
- Supported Models: Spark series.
Baichuan AI
- Registration: Baichuan AI Platform (opens new window)
- Endpoint:
https://api.baichuan-ai.com/v1
- Supported Models: Baichuan series.
Moonshot AI
- Registration: Moonshot Platform (opens new window)
- Endpoint:
https://api.moonshot.cn/v1
- Supported Models: Kimi.
Tencent Hunyuan
- Registration: Tencent Cloud Console (opens new window)
- Endpoint:
https://api.hunyuan.cloud.tencent.com/v1
- Supported Models: Hunyuan.
SenseTime Nova
- Registration: SenseTime AI Studio (opens new window)
- Endpoint:
https://api.sensenova.cn/compatible-mode/v1
- Supported Models: Nova series.
UCloud Modelverse
- Registration: UCloud Console (opens new window)
- Endpoint:
https://deepseek.modelverse.cn/v0.1
- Supported Models: DeepSeek-Reasoner.
Alibaba Bailian
- Registration: Alibaba Bailian Console (opens new window)
- Endpoint:
https://dashscope-intl.aliyuncs.com/compatible-mode/v1
- Supported Models: text-embedding-v3.
ModelScope
- Registration: ModelScope (opens new window)
- Endpoint:
https://api-inquiry.modelscope.cn/v1
- Supported Models: ModelScope community models.
OpenAI
- Registration: platform.openai.com (opens new window)
- Endpoint:
https://api.openai.com/v1
- Supported Models:
gpt-3.5-turbo
,gpt-4
,dall-e-3
, etc.
# Configuration
Field | Type | Description | Default |
---|---|---|---|
url | string | API endpoint URL | https://ai.gitee.com/v1/ |
key | string | API Key | |
model | string | Model name (e.g., gpt-3.5-turbo, DeepSeek-R1) | |
systemPrompt | string | System prompt defining model behavior and response style. Supports ${} variables | |
messages | []ChatMessage | Context/user message list (each with role/user and content) | |
images | []string | Images provided to the model for visual understanding | |
params | Params | Large model parameters |
# Params Structure
Field | Type | Description | Default |
---|---|---|---|
temperature | float32 | Sampling temperature controlling output randomness [0.0, 2.0] | 0.0 |
topP | float32 | Nucleus sampling: select from top p% tokens [0.0, 1.0] | 0.0 |
presencePenalty | float32 | Penalize new tokens based on existing presence [0.0, 1.0] | 0.0 |
frequencyPenalty | float32 | Penalize new tokens based on existing frequency [0.0, 1.0] | 0.0 |
maxTokens | int | Maximum output length | |
stop | []string | Stop sequences | |
responseFormat | string | Output format: text/json_object/json_schema | text |
jsonSchema | string | JSON Schema definition | |
keepThink | bool | Retain reasoning process (text format only) | false |
# ChatMessage Structure
Field | Type | Description |
---|---|---|
role | string | Message role: user or assistant |
content | string | Content with ${} variable support |
# Execution Result
Result replaces msg.Data
and flows to next node.The output format is determined by params.responseFormat
.
# Configuration Example
{
"id": "node_2",
"type": "ai/llm",
"name": "LLM Request",
"configuration": {
"key": "${vars.token}",
"messages": [
{"content": "My token: aaabbccc", "role": "user"},
{"content": "Book 5 tickets for 《Ne Zha 2》", "role": "user"}
],
"model": "Qwen2-7B-Instruct",
"params": {
"jsonSchema": "{\"type\":\"object\",\"properties\":{\"name\":{\"type\":\"string\"},\"num\":{\"type\":\"integer\"},\"token\":{\"type\":\"string\"}},\"required\":[\"name\",\"num\",\"token\"]}",
"responseFormat": "json_schema",
"temperature": 0.6,
"topP": 0.75
},
"systemPrompt": "You are a ticket assistant. Parse requests into JSON with: token,name,num",
"url": "https://ai.gitee.com/v1"
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Application Example
Parse ticket purchase request into JSON
{
"ruleChain": {
"id": "bM0H3pgicu_Y",
"name": "大模型智能体测试",
"debugMode": false,
"root": true,
"disabled": false,
"configuration": {
"vars": {
"token": "xx"
}
},
"additionalInfo": {
"createTime": "2025/02/13 10:55:48",
"description": "",
"layoutX": "280",
"layoutY": "280",
"updateTime": "2025/02/13 16:53:30",
"username": "admin"
}
},
"metadata": {
"endpoints": [],
"nodes": [
{
"id": "node_2",
"additionalInfo": {
"layoutX": 580,
"layoutY": 270
},
"type": "ai/llm",
"name": "请求大模型,解析票据",
"debugMode": true,
"configuration": {
"key": "${vars.token}",
"messages": [
{
"content": "我的token是:aaabbccc",
"role": "user"
},
{
"content": "帮我订5张《哪吒2》电影票",
"role": "user"
}
],
"model": "Qwen2-7B-Instruct",
"params": {
"jsonSchema": "{\n\t\t\t\"type\": \"object\",\n\t\t\t\"properties\": {\n\t\t\t\t\"name\": {\n\t\t\t\t\t\"type\": \"string\"\n\t\t\t\t},\n\t\t\t\t\"num\": {\n\t\t\t\t\t\"type\": \"integer\"\n\t\t\t\t},\n\t\t\t\t\"token\": {\n\t\t\t\t\t\"type\": \"string\"\n\t\t\t\t}\n\t\t\t},\n\t\t\t\"required\": [\"name\", \"num\", \"token\"]\n\t\t}",
"maxTokens": 0,
"responseFormat": "json_schema",
"stop": null,
"temperature": 0.6,
"topP": 0.75
},
"systemPrompt": "你是一个订票助手,解析用户购票请求,输出Json格式,包含字段:token,name,num",
"url": "https://ai.gitee.com/v1"
}
},
{
"id": "node_5",
"additionalInfo": {
"layoutX": 840,
"layoutY": 300
},
"type": "jsTransform",
"name": "请求订票API",
"debugMode": true,
"configuration": {
"jsScript": "return {'msg':msg,'metadata':metadata,'msgType':msgType};"
}
}
],
"connections": [
{
"fromId": "node_2",
"toId": "node_5",
"type": "Success"
}
]
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
Image Recognition
{
"ruleChain": {
"id": "hUx-pk6OsMjo",
"name": "大模型图片内容识别",
"debugMode": false,
"root": true,
"disabled": false,
"configuration": {
"vars": {
"token": "xxx"
}
},
"additionalInfo": {
"createTime": "2025/02/13 18:50:18",
"description": "",
"height": 40,
"layoutX": "160",
"layoutY": "250",
"title": "开始",
"updateTime": "2025/02/14 21:33:50",
"username": "admin",
"width": 240
}
},
"metadata": {
"endpoints": [],
"nodes": [
{
"id": "node_2",
"additionalInfo": {
"background": "",
"description": "",
"height": 88,
"icon": "",
"layoutX": 460,
"layoutY": 250,
"width": 240
},
"type": "ai/llm",
"name": "识别图片内容",
"debugMode": false,
"configuration": {
"description": "",
"images": [
"https://rulego.cc/img/architecture_zh.png"
],
"key": "${vars.token}",
"messages": [
{
"content": "解析图片内容",
"role": "user"
}
],
"model": "Qwen2-VL-72B",
"params": {
"frequencyPenalty": 0,
"jsonSchema": "",
"keepThink": false,
"maxTokens": 0,
"presencePenalty": 0,
"responseFormat": "",
"stop": null,
"temperature": 0.6,
"topP": 0.75
},
"systemPrompt": "",
"title": "识别图片内容",
"url": "https://ai.gitee.com/v1"
}
},
{
"id": "node_10",
"type": "log",
"name": "日志",
"configuration": {
"jsScript": "return 'Incoming message:\\n' + JSON.stringify(msg) + '\\nIncoming metadata:\\n' + JSON.stringify(metadata);"
},
"debugMode": false,
"additionalInfo": {
"layoutX": 700,
"layoutY": 270
}
}
],
"connections": [
{
"fromId": "node_2",
"toId": "node_10",
"type": "Success"
}
]
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
Edit this page on GitHub (opens new window)
Last Updated: 2025/02/17, 13:45:22